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ABSTRACT

While previous studies suggested that salinity could feed back onto MJO variability via modulating upper

ocean stratification and further on SST, there is no direct evidence yet proving (or disproving) the importance

of this feedback inMJO evolution and its predictability. This study is an initial attempt to quantify the role of

SSS feedback onMJO predictability, based on a ‘‘perfect model’’ frameworkwith the CFSv2. Specifically, the

SSS feedback is isolated by nudging model SSS to climatological states during forecasts. For comparison, two

more experiments were done, one as a benchmark experiment by estimatingMJOpredictability in CFSv2 and

another one for estimating the role of SST feedback. Analyses of these experiments indicate that SSS

feedback exerts negligible influences onMJO predictability within the constraints of the model, in contrast to

significant impacts from SST feedback. Further analysis showed that a lack of SSS influence in MJO pre-

dictability can be attributed to marginal changes in SST associated with the SSS nudging. However, there is a

caveat to the conclusion about SSS feedback. Because the barrier layer (BL) acts as a ‘‘bridge’’ for possible

SSS influences on SST over the tropical Indian and western Pacific oceans, its simulation in CFSv2 is further

explored. Analyses indicate that, in spite of realistic simulations of theMJO and intraseasonal SSS variability

in CFSv2, significant BL simulation biases are present in the tropical oceans, including too thin a climato-

logical thickness, too small intraseasonal variations, and an unrealistic intraseasonal BL–SST relationship.

Thus, our predictability experiments cannot reject the hypothesis that SSS does play a role in MJO pre-

dictability; it is possible that biases in CFSv2 influence its ability to capture such signals.

1. Introduction

Ocean salinity is a fundamental physical property of

seawater, which influences the stratification and circu-

lation of the world oceans. It also serves as a potential

indicator of the global water cycle (e.g., Schmitt 2008).

In basins where the upper ocean stratification is pri-

marily controlled by salinity, the density mixed layer

depth is shallower than the isothermal layer depth, and

the barrier layer (BL) exists between the base of the

mixed layer defined based on density and the thermo-

cline (Lukas and Lindstrom 1991; Sprintall and Tomczak

1992). In the tropical oceans, climatological BL generally

exists wherever rainfall is pronounced in a climatological

sense [e.g., the intertropical convergence zone (ITCZ)

and the South Pacific convergence zone (SPCZ)]

(Sprintall and Tomczak 1992).

The BL can affect sea surface temperature (SST) via

several mechanisms. In the presence of a BL, incoming

fluxes of heat and freshwater can be trapped within the

mixed layer, reducing their influence on the thermocline

while enhancing on surface temperature and salinity.

Similarly, by trapping momentum mixing from winds, the

BL can also enhance surface currents and, hence, hori-

zontal advection. In addition, the presence of the BL re-

duces the vertical temperature gradient at the base of the

mixed layer, and therefore can shut off turbulent entrain-

ment of cooler water that usually occurs when the mixed

layer deepens, thus decoupling the dynamic and thermo-

dynamic drivers of the surface ocean thermal inertia.

The role of salinity in seasonal-to-interannual vari-

ability has been addressed in models (e.g., MurtuguddeCorresponding author: Jieshun Zhu, jieshun@umd.edu
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and Busalacchi 1998; Ballebrera-Poy et al. 2002;

Delcroix and McPhaden 2002). The relationships among

salinity variability, freshwater fluxes, and the barrier

layer variability, and the potential feedbacks among

them are noted in various studies at interannual

time scales (Murtugudde and Busalacchi 1999;

Murtugudde et al. 2002; Hendon 2003; Hu and Sprintall

2016). Particularly, studies suggest that salinity, via the

modulation of the BL in the Indo-Pacific regions, could

influence the evolution of important climate modes, such

as theAsianmonsoon (e.g., Seo et al. 2009), IndianOcean

dipole (e.g., Annamalai et al. 2003;Masson et al. 2003;Qiu

et al. 2012), and El Niño–Southern Oscillation (ENSO;

e.g., Picaut et al. 1996; Maes et al. 2005; Zhu et al. 2014).

Zhu et al. (2014), based on experiments with the CFSv2,

found that salinity played an active role in the evolution of

the 2007/08 La Niña event, and its initialization was vital

for the predictions starting from spring. They further

suggested that the near-surface salinity anomalies over the

salinity front at the western Pacific warm pool eastern

edge (WPEE) were vital for the La Niña development.

It has also been argued that larger-than-expected

changes could occur in the ocean when winds blow

over the salinity front (Cravatte et al. 2016). For ex-

ample, the salinity front could interact with westerly

wind events, which are typically associated with a

Madden–Julian oscillation (MJO) event and are im-

portant during the initiation and development phase of

ENSO (e.g., Lengaigne et al. 2004; McPhaden 2004).

The westerlies force surface-intensified eastward cur-

rents that tilt the salinity front near the eastern edge,

creating a barrier layer (Cronin and McPhaden 2002).

This shallow salinity-stratified mixed layer, in turn, can

trap wind-input momentum in a thin surface layer and

amplify the surface eastward jet (Roemmich et al.

1994). This interaction maintains and lengthens the

zonal extent of warm SST, fostering an environment for

additional westerly winds that extend the WPEE far-

ther east, triggering the Bjerknes feedback that acts to

further intensify a developing El Niño.
At the intraseasonal time scale, the availability of Argo

profiles and global data from the satellite salinitymissions

[e.g., Aquarius (Lagerloef et al. 2010) and SMOS (Font

et al. 2013)] have begun to yield new insights into salinity

variability (e.g., Matthews et al. 2010; Grunseich et al.

2013; Drushka et al. 2012, 2014; Guan et al. 2014). The

observational studies are also complemented by forced

ocean simulation experiments (e.g., Li et al. 2015; Li and

Han 2016). Despite some inconsistencies in inferring the

role of ocean dynamics versus the effect of evaporation-

minus-precipitation (E 2 P) on salinity variability, these

studies have found significant modulation of surface and

upper ocean salinity by the MJO.

The feedback of salinity onto MJO variability, how-

ever, has only been indirectly suggested via its role in

upper ocean stratification variability (e.g., the BL),

and further by modulating intraseasonal SST (e.g.,

Zhang and McPhaden 2000; Drushka et al. 2014;

Guan et al. 2014; Horii et al. 2016). For example,

Drushka et al. (2014) evaluated the effect of the BL

on the upper ocean response to MJO forcing in the

eastern equatorial Indian Ocean (e.g., 08, 908E) and

found that modulation of the BL can have significant

consequences on the response of the upper ocean to

the MJO with a thicker BL corresponding to weaker

SST anomalies. For the western tropical Pacific (e.g.,

08, 1658E), the composite analysis by Zhang and

McPhaden (2000) suggests that the intraseasonal

surface cooling was partially contributed by thinning

of BL. Guan et al. (2014) also suggested that the

MJO-related salinity anomalies could strongly regu-

late surface density and potential energy. As the

mean SST in the warm pool region is close to the

threshold of atmospheric convection, any small SST

fluctuations may significantly modulate the potential

for local convective activity. Therefore, the above

studies imply that the MJO-related salinity (and BL)

variations might be able to feed back onto the MJO

itself through their influence on SST. As a matter of

fact, the role of the BL in the MJO was stated as one

of three hypotheses to be tested by the Dynam-

ics of the Madden–Julian Oscillation (DYNAMO;

Yoneyama et al. 2013) field campaign.

As far as we know, there is no direct evidence so

far that proves or disproves the role of salinity (or

the BL) in MJO evolutions. In this study, the NCEP

CFSv2 (Saha et al. 2014) is used to assess MJO pre-

dictability experiments to validate the possible role

of sea surface salinity (SSS) feedback, in which the

model SSS is nudged to a climatological state during

integrations and the SSS feedback is thus suppressed.

The hypothesis to be tested with the experiments is

that the variations in SSSs over the tropical In-

dian and western Pacific Oceans might modulate the

local BL thickness, which may in turn influence the local

SST variability and, as a consequence, the MJO

predictability.

The paper is organized as follows: The model, ex-

perimental design, observations, and analysis methods

are described in the section 2. Section 3 briefly exam-

ines the MJO simulations in CFSv2, particularly its

simulated intraseasonal SSS variability. The MJO

predictability results are presented in section 4. Sec-

tion 5 further makes some discussions in association

with the BL simulation biases in CFSv2. A brief sum-

mary is given in section 6.
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2. Model, experiments, and analysis methods

a. Model

In this study, the NCEP Climate Forecast System,

version 2 (CFSv2; Saha et al. 2014), is used for experi-

ments. The ocean component (the GFDLMOMversion

4) of CFSv2 has a horizontal grid of 0.58 3 0.58 poleward
of 308S and 308N with meridional resolution gradually

increasing to 0.258 between 108S and 108N. Vertically, it

has 40 geopotential (z) levels (27 of them in the upper

400m), and its maximum depth is approximately 4.5 km.

The atmospheric component of CFSv2 has a horizontal

resolution at T126 with 64 vertical levels in a hybrid

sigma-pressure coordinate. The two components ex-

change surface momentum, heat, and freshwater fluxes,

as well as SSTs, every 30min.

There is one difference, however, between the CFSv2

used in this study and the operational CFSv2 (Saha et al.

2014). In the latter, the simplified Arakawa–Schubert

(SAS) cumulus parameterization (Pan and Wu 1995)

was used as its convection scheme, whereas in this study

the relaxed Arakawa–Schubert (RAS) cumulus con-

vection scheme (Moorthi and Suarez 1992, 1999) is used.

Our previous analyses (Zhu et al. 2017) indicate that the

MJO simulation in the CFSv2 with the RAS scheme is

quite realistic, and is significantly better than the oper-

ational CFSv2 (Saha et al. 2014). In addition, the MJO

predictability was also found to be higher in the CFSv2

with RAS (Zhu et al. 2019, manuscript submitted to

J. Climate). In following discussion, the CFSv2 version

with the RAS scheme is also referred to as CFSv2 for

brevity.

b. Experiments

The predictability experiments in this study are

based on a ‘‘perfect model’’ framework. CFSv2 is first

integrated for 30 years (Zhu et al. 2017), starting from

the Climate Forecast System Reanalysis (CFSR; Saha

et al. 2010) initial state on 1 January 1980. After 10

years of integrations, restart files of the free run were

saved daily for ocean (and sea ice) and every 12 h for

atmosphere (and land). Based on these restart files,

three sets of prediction experiments (referred to as

CTL, SST1dy, and SSS1dy) were done. All prediction

experiments were for the boreal winters of the second

10-yr model simulations (referred to as ‘‘Reference’’).

For each experiment, 45-day predictions were made

every five days starting from 1 November of each of the

10 model years until the end of following March (to-

tally, 31 cases for each winter), with five ensemble

members applied. The five ensemble members were

generated by perturbing the atmospheric initial con-

ditions saved during the free run, that is, by adding a

small fraction (1%–3%) of atmospheric state differ-

ences between current time and 12 h ahead/behind to

the initial conditions. For each of the three prediction

experiments, there are a total of 10 years3 31 cases3 5

members (51550) 45-day predictions.

In CTL, the predictionmodel was CFSv2 itself and the

initial conditions were constructed from restart files

saved during the free run (with the generation of five

ensemble members as described above). CTL is con-

ducted to benchmark the MJO predictability in CFSv2.

In SST1dy (SSS1dy), all model settings and initializa-

tions are same as in CTL, except that model SSTs (SSSs)

during integrations are nudged to model climatological

SSTs (SSSs) with a seasonal cycle. The model climatol-

ogies were derived from the free run. For the choice of

restoring time scale of 1 day, the SST (SSS) feedback is

strongly suppressed in the prediction experiments of

SST1dy (SSS1dy). We note that in the SSS1dy experi-

ments, SST andMJO feedback still occurs; however, the

role SSS may play in this feedback (via modulating

SSTs) is suppressed. Considering that the possible effect

of SSS on MJO must be bridged through SST, and if all

the SST variability (in the context of MJO) was due to

SSS, the SST1dy experiment is the upper limit of skill

degradation if SSS variability was suppressed (i.e., the

SSS1dy simulation).

c. Observations

To validate the property of simulated MJOs in

CFSv2, the following observational data were used:

daily SST analyses from the National Centers for En-

vironmental Information (NCEI) using the optimum

interpolation (OI) scheme (Reynolds et al. 2007);

rainfall estimate from the CPC morphing technique

(CMORPH) satellite retrieval (Joyce et al. 2004); 850-

hPa zonal winds (U850) from the CFSR (Saha et al.

2010); and daily SSS data of the Level 3 version 2

Aquarius Combined Active-Passive (CAP) product

(Yueh 2013; https://podaac.jpl.nasa.gov/aquarius). The

observed MJO events are tracked based on the com-

monly used Real-time Multivariate MJO (RMM) in-

dex (Wheeler and Hendon 2004), and the daily index

values, including the phase and magnitude of the MJO,

are obtained from the Center for Australian Weather

and Climate Research. Most validations are based on

data during January 1998–December 2014, except for

SSS data, which are for August 2011–June 2015 (the

Aquarius record period; Lagerloef et al. 2010). In ad-

dition, the climatological BL thickness produced by

French Research Institute for Exploration of the Sea

(IFREMER; http://www.ifremer.fr/cerweb/deboyer/mld/

Subsurface_Barrier_Layer_Thickness.php) is taken as

observations.
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d. Analysis methods

For the validation of CFSv2, the daily anomalies of

observed fields are calculated as departures from sea-

sonal climatology, which is defined as annual mean plus

the first four harmonics of long-term average over

2012–14 for Aquarius SSS and 1998–2014 for other

variables. The intraseasonal anomalies are further ob-

tained by applying 20–100-day bandpass filtering to the

raw daily mean anomalies. A similar procedure is used

for calculating the intraseasonal anomalies of model

fields for the last 20 years of the above 30-yr free run

with CFSv2. Composite analysis is used to derive MJO-

related variations for both observed and simulated

fields, and its statistical significance is evaluated based

on two-tailed Student t test.

To extract the MJO component in CFSv2, a process

similar to that in Wheeler and Hendon (2004) is

adopted. Specifically, a combined empirical orthogonal

function (EOF) analysis is done for the equatorially

(between 158S and 158N) averaged model outgoing

longwave radiation (OLR), and 850- and 200-hPa zonal

wind (U850 and U200) filtered anomalies, which are first

normalized by their respective standard deviation. The

first two leading EOFs (not shown) are taken as a rep-

resentation of the MJO in CFSv2, and their correspond-

ing normalized principal components (PC1 and PC2) are

used to define its amplitude (MJOamp5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PC12 1PC22
p

)

and phase angle fMJOpha 5 tan21[(2PC1)/PC2]g.
The reference andpredictedMJO indices are obtainedby

projecting the Reference and predicted anomalous fields

onto the above two EOF modes. The predicted field

anomalies are obtained by removing a background that is a

function of starting date and lead day. The background is

computed as a fourth-order polynomial fit over the 31 5-day

periods (corresponding to 155 days) for each year and each

FIG. 1. Composite MJO life cycle in (a),(b) observations and (c),(d) CFSv2RAS for intraseasonal anomalies

of (a),(c) precipitation (mm day21; shadings) and U850 (m s21; contours) and (b),(d) precipitation (mm day21;

shadings) and SST (8C; contours). For each phase, the composite value is the average of the days when the MJO

is in a particular phase and the MJO amplitude is greater than 1, which in observations (CFSv2RAS) ranges

from 409 days for phase 7 (476 days for phase 6) to 523 days for phase 1 (558 days for phase 8). The y axis

represents MJO phases. Phase 1 (phase 8) is repeated as phase 9 (phase 0) in observations (CFSv2RAS) for

continuity of the display. Values in shadings and in green contours are significant at the 90% level based on a

two-tailed Student t test.
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lead time, but the application of third- or fifth-order

polynomial fit shows negligible skill difference. For

consistency, the same definition of anomalies is used

for the Reference state (which also serves as the veri-

fication for the prediction experiments), which is done

by reconstructing the Reference as if it were a forecast

member for each initial time and target day. Both the

Reference and predicted RMM indices are then nor-

malized by the standard deviation of the Reference

RMM indices. Following Lin et al. (2008), the bivariate

anomaly correlation coefficient (ACC) and bivariate

root-mean-square error (RMSE) are used to measure

the MJO prediction skill in terms of RMM indices.

3. MJO and intraseasonal SSS variability in CFSv2

In this section, we briefly examine the MJO simula-

tions in CFSv2 with the RAS convection scheme, and

the analysis is based on the last 20 years of the Reference

run with CFSv2. Figure 1 compares the composite MJO

life cycle in CFSv2 with that in observations in terms of

eight MJO phases (Wheeler and Hendon 2004). For

each phase, the composite values are calculated as the

average of 20–100-filtered anomalies for the days when

MJOpha is within this phase andMJOamp is greater than 1.

It is noted that there is one phase delay between the

CFSv2 and observational composites. The phase mis-

match, however, has no effect on our model validations,

and is an artifact of the methodology applied in the

calculation of the RMM index (i.e., EOF; Wheeler and

Hendon 2004), which simply takes the first two leading

orthogonal modes to represent the MJO. The two

modes could represent phases 1 and 3 in one model and

phases 2 and 4 in another, for example.

By comparing with observations (Figs. 1a,b), it is clear

that CFSv2 realistically simulates the eastward propa-

gation of convection and the phase relationship among

precipitation, low-level winds, and SST associated with

MJO (Figs. 1c,d). Particularly, the phase relationship

between convections and SST is well captured: prior to

the occurrence of convection (colors in Fig. 1d) SST

(contours in Fig. 1d) tends to be warm, and after the

passage of convection SST becomes cold. Our previous

experiments (Zhu et al. 2017) also suggested that SST

not only changes in a response to the MJO, but also

plays an active role in MJO evolution. More details are

available in Zhu et al. (2017).

Since SSS is a focus of this study, the simulation

of intraseasonal SSS variability in CFSv2 is further

validated against the Aquarius satellite observations

(Lagerloef et al. 2010; Yueh 2013) for the tropical Indian

Ocean and western tropical Pacific Ocean. Previously,

the intraseasonal SSS variability in the Aquarius ob-

servations was analyzed by Guan et al. (2014) for the

period of August 2011 to May 2013. In our validations,

the whole Aquarius availability period is taken (August

2011–June 2015), and a comparison with Guan et al.

(2014) is briefly discussed.

Figure 2 presents the standard deviation of total

nonseasonal (relative to the seasonal cycle) and intra-

seasonal (20–100 day) SSS variability. By comparing

with Guan et al. (2014; see their Fig. 1), it is evident that

their analysis based on the shorter-period dataset

captured a similar distribution of salinity variations as

FIG. 2. Standard deviation of (a),(c) total nonseasonal (seasonal climatology removed) SSS anomalies (psu) and

(b),(d) intraseasonal (20–100 day filtered) SSS anomalies (psu) in (a),(b) Aquarius and (b),(d) CFSv2RAS.
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here. In terms of total nonseasonal anomalies (Figs. 2a

and 1a in Guan et al. 2014), large variations are present

in the northern and equatorial Indian Ocean and the

equatorial Pacific Ocean. A similar distribution with a

smaller magnitude holds for the intraseasonal SSS var-

iability [Figs. 2b and 1b in Guan et al. (2014)]. In com-

parison with Aquarius SSS, the CFSv2 simulation

captures the total nonseasonal SSS variation well in both

distribution and magnitude (Fig. 2c). For the intra-

seasonal SSS anomaly, CFSv2 underestimates its mag-

nitude, but captures the spatial distribution realistically

(Fig. 2d).

Figure 3 examines the intraseasonal SSS evolution

over the composite MJO cycle. The comparison be-

tween Fig. 3a herein and Guan et al. (2014; their Fig. 2)

seems to suggest that an analysis based on a too short

SSS record might include some uncertainties in deriving

the MJO-related signal. With the almost 4-yr Aquarius

SSS records (Fig. 3a), the MJO-related SSS presents a

clear eastward-propagating signal, which is generally in

phase of convection (not shown). In contrast, in the

Guan et al. (2014) analysis based on 22 months of the

Aquarius SSS record, the SSS propagating signal is not

well defined. In CFSv2 (Fig. 3b), on the other hand, the

eastward-propagating signal is well captured, even

though the SSS variations, consistent with Fig. 2, are

smaller than Aquarius.

In summary, the above validations suggest that the

CFSv2 with the RAS convection scheme simulates the

MJO quite realistically. For SSS, CFSv2 also well cap-

tures theMJO-related signal, even though its magnitude

seems underestimated. Thus, we used CFSv2 as an ex-

ample to explore the role of SSS feedback on MJO

predictability. Reproducibility of upper ocean salinity

FIG. 3. Composite MJO life cycle of intraseasonal SSS anomalies (psu) in (a) Aquarius observations and

(b) CFSv2RAS. For each phase, the composite value is the average of the days when the MJO is in a particular

phase and theMJO amplitude is greater than 1, ranging from 78 days for phase 8 (476 days for phase 6) to 126 days

for phase 1 (558 days for phase 8) in Aquarius (CFSv2RAS). Values in shadings are significant at the 90% level

based on a two-tailed Student t test.
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condition such as mixed layer depth (MLD) and BL

thickness and the impacts on the MJO predictability are

discussed in detail in section 5.

4. Predictability results

Based on the CFSv2, three sets of predictability ex-

periments (CTL, SST1dy, and SSS1dy) are conducted

with the ‘‘perfect model’’ framework. As representative

metrics of MJO overall prediction skill, Fig. 4 evaluates

the bivariate ACC and bivariate RMSE between the

Reference and predicted RMM indices (Wheeler and

Hendon 2004) in the three experiments. By both mea-

sures, SSS1dy and CTL have comparable skill in pre-

dicting the MJO, and SST1dy has lower skill. The decay

of skill in the CTL experiment suggests the MJO in

CFSv2 is potentially predictable up to 44 days (when

defined as the lead time when theACC skill drops below

0.5). RMSE in CTL is generally less than 1.2 at lead

times less than 40 days.

When the SST feedback is suppressed (i.e., the

SST1dy experiment), the capability to predict the MJO

is significantly reduced, with ACC decreasing to near

zero and RMSE increasing to ;1.6 at day 36. Conse-

quently, SST1dy provides skillful MJO predictions only

up to around 19 days (takingACC of 0.5 as the threshold

of skillful predictions). The marked skill reduction

confirms that SST feedback plays an important role in

MJO evolution, and thus its predictability (e.g., Fu et al.

2008; Pegion and Kirtman 2008). On the other hand,

when the SSS feedback is suppressed (i.e., the SSS1dy

experiment), negligible changes appear in the skill of

MJO predictions relative to CTL. The comparison thus

suggests that SSS feedback does not play a role in the

MJO predictability in CFSv2. We note that SSS1dy ex-

periments do include SST and MJO feedback and, rel-

ative to the CTL experiments, only the contribution of

SSS variability on SST is suppressed. As suggested by

the results, however, the role of SSS with regard to SST

variability does not have an appreciable role with regard

to MJO prediction skill.

To visualize the prediction differences among three

experiments, predicted MJO evolutions for respective

experiments are compared by looking at their composite

precipitation, SST, and SSS anomalies. Figures 5 and 6

present the prediction anomalies with their initial states

falling within phase 1 of MJO events (Wheeler and

Hendon 2004), together with those in Reference. In

Reference (Figs. 5a and 6a), active convection (colors)

starts in the Indian Ocean, propagates through the

Maritime Continent, and reaches the date line by day

;30. Prior to the occurrence of convections, SST

FIG. 4. (a) Bivariate anomaly correlation coefficient (ACC) and (b) bivariate root-mean-square error (RMSE) for

predictions of CTL (black), SST1dy (red), and SSS1dy (blue). The horizontal line in (a) is 0.5.
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(contours in Fig. 5a) tends to be warm. After the passage

of convection, SST becomes cold. The phase relation-

ship between convection and SST is consistent with

previous observational analysis (e.g., Krishnamurti et al.

1988; Shinoda et al. 1998; Woolnough et al. 2000;

DeMott et al. 2015; Zhu et al. 2017), and our previous

experiments (Zhu et al. 2017) have indicated an active

role of SSTs in MJO evolution.

For SSS in CFSv2 (contours in Fig. 6a), the largest

intraseasonal variations are in the central and eastern

Indian Ocean, and generally follow the precipitation

anomalies (colors in Figs. 5a and 6a), suggesting that in

CFSv2 the MJO-related SSS variations in the Indian

Ocean are largely controlled by evaporation-minus-

precipitation (E 2 P), consistent with observational

diagnostics (Matthews et al. 2010; Grunseich et al. 2013).

The SSS–precipitation relationship in the basin, however,

is not at 1/4-cycle lag, indicating some contributions from

ocean dynamics (Guan et al. 2014). In addition, a sec-

ondary SSS variation (Fig. 5a) is present in the western

Pacific (close to the west side of the date line), which

seems to have little linkage with precipitation variations

and is mainly driven by ocean dynamics (Matthews et al.

2010; Guan et al. 2014).

Overall, the results indicate that the MJO features in

the Reference simulation are well predicted by the CTL

experiment (Figs. 5b and 6b), suggesting a high pre-

dictability of theMJO in CFSv2. In SST1dy, as expected

from its experimental design, there is little SST variation

(contours in Fig. 5c); meanwhile, the eastward propa-

gation of atmospheric convection is not apparent (or is

much slower; colors in Figs. 5b and 6b). The prediction

errors in convection confirm the important role SST

feedback plays in maintaining the propagation of MJO-

related convective anomalies (Zhu et al. 2017) and thus

in its predictions. For SSS, in SST1dy (contours in

FIG. 5. The evolutions of composite precipitation (mmday21; shadings) and SST (8C; contours) averaged over

158S–158N, starting fromMJO initial phase 1 in (a) Reference simulations, and predictions of (b) CTL, (c) SST1dy,

and (d) SSS1dy. For the composites, 30MJO events are picked when theMJO initial amplitude is larger than 1 and

the MJO initial phase angle is within phase 1 (Wheeler and Hendon 2004). The y axis represents time in days.
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Fig. 6c), the SSS variations in the Indian Ocean are

generally well predicted within the first 20 lead days, but

not well afterward, which is related to prediction errors

in precipitation (colors in Figs. 5c and 6c). In the western

Pacific close to the west side of the date line (e.g., 1508E–
1808), no clear precipitation signal is predicted by

SST1dy, but SSS anomalies are predicted to a certain

level (contours in Fig. 6c), confirming the role of ocean

dynamics in the intraseasonal SSS evolutions in the re-

gion as discussed above.

In SSS1dy, there are few SSS variations as expected

(contours in Fig. 6d). On the other hand, the predictions

of convection and SST (Fig. 5d) are comparable to those

in CTL (Fig. 5b), featuring an eastward propagation as

in Reference (Fig. 5a). The analyses are consistent with

the skill evaluation in Fig. 4, suggesting that SSS plays a

marginal role in MJO evolutions in CFSv2. The result is

in contrast to previous suggestions (e.g., Zhang and

McPhaden 2000; Drushka et al. 2014) and our origi-

nal hypothesis that SSS plays an active role in MJO

evolutions through modulating BL thickness and, fur-

ther, SST. In addition, the above MJO differences

among three sets of predictions can also be seen in the

composites based on predictions starting from initial

phase 4 of MJO (figures not shown), but with oppo-

site anomalies.

As any possible impacts of SSS on the MJO must be

bridged through SST, it is important to quantify how

SST predictions in CFSv2 are influenced by the SSS

nudging. Figures 7 and 8 compare the prediction skill of

daily SST anomalies in three experiments by measures

of anomaly correlation and RMSE, respectively. For

each prediction experiment, correlation gradually de-

crease as lead time increases in all three experiments

(Figs. 7), but RMSEs increase only in CTL (Fig. 8a) and

SSS1dy (Fig. 8c), with small changes in SST1dy (Fig. 8b).

In SST1dy, model SSTs are strongly nudged to a cli-

matological state, and its SST variations are negligible

(close to 0; e.g., Fig. 5c). Consequently, RMSE in

SST1dy generally represents the variance of daily SSTs

FIG. 6. As in Fig. 5, but for precipitation (mmday21; shadings) and SSS (contours).
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in Reference, and thus remains almost the same at dif-

ferent lead times (Fig. 8b).

Comparing skill measures across experiments, as ex-

pected from the experimental design of SST1dy (SST

variations are strongly suppressed), its daily SST

anomalies show the worst prediction skill (Figs. 7b and

8b) in comparison with CTL (Figs. 7a and 8a) and

SSS1dy (Figs. 7c and 8c). The comparison between

SSS1dy and CTL, on the other hand, suggests that the

SST predictive skill does not exhibit a discernible deg-

radation by the SSS nudging (Fig. 7a vs Fig. 7c; Fig. 8a vs

Fig. 8c). In other words, the SSS nudging did not cause

any discernible effects on SST evolutions in CFSv2,

which explains why nudging SSS also exerts little effect

on the MJO predictability in CFSv2 (Fig. 4).

5. Discussion: BL simulation biases in CFSv2

The above analyses of predictability experiments in-

dicate that suppressing SSS feedback does not exert

discernible effects on MJO predictability in CFSv2,

which was further traced to no visible SST changes in

association with the SSS variability. The next question is

why allowingmodulation in SSS did not bring changes in

SST. Considering that the BL is an important mecha-

nism for possible SSS influences on SST over the tropical

Indian and western Pacific Oceans, in this section

we assess the simulation of the BL in CFSv2. In this

study, following Sprintall and Tomczak (1992), the iso-

thermal layer depth (ILD) is defined as the depth at

which temperature decreases by 0.58C relative to the

temperature at the 5-m depth (the model uppermost

level), the MLD is defined by using a density difference

from the surface (5-m depth) value that is equivalent to a

decrease (0.58C) in temperature, and the BL thickness is

defined as the difference between ILD and MLD. The

part of analyses is again based on the last 20 years of the

Reference run with CFSv2.

The simulation of climatological mean BL thickness

is first evaluated in Figs. 9a and 9c. In observations

(Fig. 9a), thick BL appears in the eastern equatorial

Indian Ocean, the western equatorial Pacific Ocean,

and the northwestern equatorial Atlantic Ocean, which

are maintained by different mechanisms (Lukas and

FIG. 7. Distribution of anomaly correlations of daily SST anomalies between Reference simulations and predictions by (a) CTL,

(b) SST1dy, and (c) SSS1dy, at (from top to bottom) 5, 15, 25, and 35 days of lead time.
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Lindstrom 1991; Sprintall and Tomczak 1992). In CFSv2

(Fig. 9c), it is good to note that the climatological BL

distribution is generally well captured.However, we also

note that the simulated BL is too thin, only half of ob-

served thickness. For a given atmospheric forcing, the

thinner BL means a smaller BL effect on SST, which

may degrade the SSS effect on MJO predictability. In

addition, MLD is also somewhat deeper in CFSv2

(Fig. 9d) than in observations (Fig. 9b) in the eastern

equatorial Indian Ocean and far western Pacific. The

FIG. 8. As in Fig. 7, but for RMSEs (8C).

FIG. 9. Climatological mean (a),(c) barrier layer thickness (unit: m) and (b),(d) mixed layer depth (unit: m)

distribution in (a),(b) observations produced by French Research Institute for Exploration of the Sea (IFREMER;

http://www.ifremer.fr/cerweb/deboyer/mld) and (c),(d) CFSv2RAS. Note that values in (c) have beenmultiplied by

a factor of 2.
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MLD bias may also cause a lack of salinity influence on

MJO predictability through an underestimation of SST

change in response to heat flux forcing.

Based on the analysis of variability, it is noted that the

MJO-related BL variation is too small in CFSv2. For the

simulation of MLD (colors in Fig. 10a), its intraseasonal

variation east of 1408E is generally in accord with 850-

hPa zonal wind (U850) and SST, suggesting that both

stronger winds and surface cooling help to deepen the

mixed layer from phase 1 over the eastern equatorial

Indian to phase 5 over the western Pacific. However,

since MLD and ILD (figure not shown) vary in tandem,

the BL thickness between them does not change much

during the course of the MJO cycle in CFSv2. The

composite BL thickness anomaly in CFSv2 is generally

less than 0.5m (contours in Fig. 10a or colors in Fig. 10b)

in association with the MJO, which is much smaller

than a previous finding of Schiller and Godfrey (2003),

who, based on a forced ocean general circulation model,

reported a composite MJO BL thickness signal of

around eight meters with even larger amplitudes in

individual MJO events.

In addition, the intraseasonal BL–SST relationship

seems not realistic in some regions. For example,

Zhang and McPhaden (2000), based on a composite

analysis of observed MJO events, demonstrated that

the intraseasonal surface cooling at the WPEE (e.g.,

08, 1658E) is partially contributed by the thinning of

BL, suggesting an active role of BL in MJO evolution.

In CFSv2, in contrast, the cooling (Fig. 11e) corre-

sponds to the thickening of BL (Fig. 11d). In fact,

the BL–U850 relationship (Figs. 10b, 11b,d) seems

to suggest that the BL thickening is a response to

anomalous westerlies at the WPEE as suggested by

Cronin and McPhaden (2002). The inconsistency

might explain why SST in CFSv2 is less sensitive to BL

variations.

In summary, the above analyses indicate that the

current version of CFSv2 presents significant biases in

simulating BL in the tropical oceans, including too

thin a climatological thickness, too small intraseasonal

variations, and an unrealistic intraseasonal BL–SST

relationship. While our predictability experiments with

CFSv2 illustrate negligible effects on MJO pre-

dictability from SSS, the possibility could not be re-

jected that SSS does play a role in MJO predictability

as suggested by previous studies (e.g., Zhang and

McPhaden 2000; Drushka et al. 2014; Guan et al. 2014;

Horii et al. 2016), but the current model (particularly

the subsurface ocean process) is not good enough to

capture the relevant physics and signal. In the future,

the question is definitely worthy of a revisit once cli-

mate models are significantly improved with a realistic

BL simulation.

6. Conclusions

In this study, the MJO simulation (particularly its asso-

ciated SSS simulation) in CFSv2 is first briefly validated

against observations. This analysis suggests that the CFSv2

with theRAS convection scheme simulates theMJO quite

realistically. Especially, compared with the Aquarius SSS

observations, the CFSv2 has good fidelity in simulating the

MJO-related SSS signal.

Further, to explore the role of SSS feedback in MJO

predictability, three sets of predictability experiments

FIG. 10. Composite MJO life cycle in CFSv2RAS for intraseasonal anomalies of (a) MLD (m; shadings) and BL

thickness (m; contours) and (b) BL thickness (m; shadings) and U850 (m s21; contours). For each phase, the

composite value is the average of the days when the MJO phase angle is within the phase and MJO amplitude is

greater than 1, ranging from 476 days for phase 6 to 558 days for phase 8. The y axis representsMJO phases. Phase 8

is repeated as phase 0 for continuity of the display. Values in shadings and in green contours are significant at the

90% level based on a two-tailed Student t test.
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were conducted to predict MJO events in CFSv2. The

first one is conducted for an estimation of MJO pre-

dictability in CFSv2, and the other two are performed

with model SSS and SST nudged to climatological states

during forecasts, respectively. The comparison of the

experiments indicates that SSS feedback exerts negligi-

ble influences on MJO predictability in CFSv2, in con-

trast to large impacts from SST feedback. The minimal

role of SSS in MJO predictability is further traced to

marginal changes in SST in association with the sup-

pression of SSS feedback.

To understand why SST does not change as a result of

SSS modulations, we explored the simulation of the BL in

CFSv2, which is an important ‘‘bridge’’ for possible SSS

influences on SST over the tropical Indian and western

Pacific Oceans. It was found that significant BL simulation

biases exist in the tropical oceans (e.g., too thin a clima-

tological thickness, too small intraseasonal variations, and

an unrealistic intraseasonal BL–SST relationship). Thus, it

is possible that SSS does play a role in MJO predictability,

but its effect is not as strong as that associatedwith SSTand

the current model is not realistic enough to capture such

signal. Considering this possibility, more experiments with

diverse models (particularly those with more realistic BL

simulations) should be encouraged to revisit the hypothesis

that salinity might be able to affect MJO predictability

through its role in the BL and SST. Following the path, a

new version of CFSv2 with 1-m vertical resolution in the

upper ocean (Ge et al. 2017; Zhang et al. 2019) is being

applied for experiments. We expect that the new version

might simulate the BL more realistically and will provide

further assessment of the role of SSS on MJO variability.

In addition, previous studies (e.g., Schiller andGodfrey

2003; Drushka et al. 2014) have suggested that the BL

thickness variance over individual events may be con-

siderably larger than the composite. In future, we plan to

analyze some MJO events in model simulations with

stronger BL signal and realistic SST–BL relationship, and

conduct predictability experiments based on them. Such

an event-dependent salinity effect was actually identified

in a previous ENSOpredictability study (Zhu et al. 2014).
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